44 research outputs found

    Social Saliency of the Cue Slows Attention Shifts

    Get PDF
    Eye gaze is a powerful cue that indicates where another person\u27s attention is directed in the environment. Seeing another person\u27s eye gaze shift spontaneously and reflexively elicits a shift of one\u27s own attention to the same region in space. Here, we investigated whether reallocation of attention in the direction of eye gaze is modulated by personal familiarity with faces. On the one hand, the eye gaze of a close friend should be more effective in redirecting our attention as compared to the eye gaze of a stranger. On the other hand, the social relevance of a familiar face might itself hold attention and, thereby, slow lateral shifts of attention. To distinguish between these possibilities, we measured the efficacy of the eye gaze of personally familiar and unfamiliar faces as directional attention cues using adapted versions of the Posner paradigm with saccadic and manual responses. We found that attention shifts were slower when elicited by a perceived change in the eye gaze of a familiar individual as compared to attention shifts elicited by unfamiliar faces at short latencies (100 ms). We also measured simple detection of change in direction of gaze in personally familiar and unfamiliar faces to test whether slower attention shifts were due to slower detection. Participants detected changes in eye gaze faster for familiar faces than for unfamiliar faces. Our results suggest that personally familiar faces briefly hold attention due to their social relevance, thereby slowing shifts of attention, even though the direction of eye movements are detected faster in familiar faces

    Idiosyncratic, Retinotopic Bias in Face Identification Modulated by Familiarity

    Get PDF
    The perception of gender and age of unfamiliar faces is reported to vary idiosyncratically across retinal locations such that, for example, the same androgynous face may appear to be male at one location but female at another. Here we test spatial heterogeneity for the recognition of the identity of personally familiar faces in human participants. We found idiosyncratic biases that were stable within participants and that varied more across locations for low as compared to high familiar faces. These data suggest that like face gender and age, face identity is processed, in part, by independent populations of neurons monitoring restricted spatial regions and that the recognition responses vary for the same face across these different locations. Moreover, repeated and varied social interactions appear to lead to adjustments of these independent face recognition neurons so that the same familiar face is eventually more likely to elicit the same recognition response across widely separated visual field locations

    The Neural Representation of Personally Familiar and Unfamiliar Faces in the Distributed System for Face Perception

    Get PDF
    Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human face processing system comprises a core system that analyzes the visual appearance of faces and an extended system for the retrieval of person-knowledge and other nonvisual information. We applied multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all familiar identities and information that distinguishes specific face identities from each other. Both identity-independent familiarity information and face identity could be decoded in an overlapping set of areas in the core and extended systems. Representational similarity analysis revealed a clear distinction between the two systems and a subdivision of the core system into ventral, dorsal and anterior components. This study provides evidence that activity in the extended system carries information about both individual identities and personal familiarity, while clarifying and extending the organization of the core system for face perception

    The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data

    Get PDF
    Having the means to share research data openly is essential to modern science. For human research, a key aspect in this endeavor is obtaining consent from participants, not just to take part in a study, which is a basic ethical principle, but also to share their data with the scientific community. To ensure that the participants' privacy is respected, national and/or supranational regulations and laws are in place. It is, however, not always clear to researchers what the implications of those are, nor how to comply with them. The Open Brain Consent (https://open-brain-consent.readthedocs.io) is an international initiative that aims to provide researchers in the brain imaging community with information about data sharing options and tools. We present here a short history of this project and its latest developments, and share pointers to consent forms, including a template consent form that is compliant with the EU general data protection regulation. We also share pointers to an associated data user agreement that is not only useful in the EU context, but also for any researchers dealing with personal (clinical) data elsewhere

    mvdoc/famface_data: BIDS formatted dataset

    No full text
    No description provided

    Example of the paradigm (A) with stimuli used in the experiment (B).

    No full text
    <p>Example of the paradigm (A) with stimuli used in the experiment (B).</p

    Familiar Face Detection in 180ms

    Get PDF
    <div><p>The visual system is tuned for rapid detection of faces, with the fastest choice saccade to a face at 100ms. Familiar faces have a more robust representation than do unfamiliar faces, and are detected faster in the absence of awareness and with reduced attentional resources. Faces of family and close friends become familiar over a protracted period involving learning the unique visual appearance, including a view-invariant representation, as well as person knowledge. We investigated the effect of personal familiarity on the earliest stages of face processing by using a saccadic-choice task to measure how fast familiar face detection can happen. Subjects made correct and reliable saccades to familiar faces when unfamiliar faces were distractors at 180ms—<i>very rapid saccades</i> that are 30 to 70ms earlier than the earliest evoked potential modulated by familiarity. By contrast, accuracy of saccades to unfamiliar faces with familiar faces as distractors did not exceed chance. Saccades to faces with object distractors were even faster (110 to 120 ms) and equivalent for familiar and unfamiliar faces, indicating that familiarity does not affect <i>ultra-rapid saccades</i>. We propose that detectors of diagnostic facial features for familiar faces develop in visual cortices through learning and allow rapid detection that precedes explicit recognition of identity.</p></div

    Proportion of correct (blue) and incorrect (red) saccades for each task.

    No full text
    <p>Gray vertical bar represents minimum SRT (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0136548#sec002" target="_blank">Methods</a> for definition). Average SRTs are reported only for tasks significantly different from chance.</p

    Dataset for Familiar face detection in 180ms

    No full text
    <p>Dataset containing reaction times to the simultaneous presentation of personally familiar faces, stranger faces, or objects.</p
    corecore